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1 Università della Tuscia, Istituto di Genio Rurale, Via S. Camillo De Lellis, I-01100 Viterbo, Italy and CNR-GNFM
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Abstract. We critically reanalyze some recent experimental data on the Bose-Einstein (BE) correlations
in pion production. We show that there is, in some cases, an experimental evidence for a peak height of
the correlation function greater than two, contrarily to the predictions of the “canonical” theory of BE
correlations. Although an explanation of such an “anomalous” value can be given by means of suitable
phenomenological models, we show that this result is a straightforward consequence of the treatment of BE
correlations within the framework of a description of strong interactions in terms of a deformed Minkowski
metric.

1 Introduction

It is known since 1959 that the “normal” pionic corre-
lations have an enhancement at low dipion mass M [1].
These “normal” pionic correlations are defined by

Cnor
(2) (p1, p2) =

NU

NL

DL(p1, p2)
DU (p1, p2)

, (1)

whereDL(p1, p2) andDU (p1, p2) are respectively the prob-
ability density for like (2π+ and 2π−) and unlike (π+π−)
charged pionic pairs having four-momenta p1 and p2, and
NL and NU are the total number of like and unlike com-
binations.

This effect is interpreted to be due to the fact that pi-
ons obey the Bose-Einstein statistics [2]. Afterwards, the
works of several authors developed this interpretation and
led to the formulation of the “canonical” theory of Bose-
Einstein correlations (CTBEC) [3]. In this theory, the pi-
onic correlations are defined by

Cth
(2)(p1, p2) =

DL(p1, p2)
D0(p1, p2)

, (2)

where D0(p1, p2) is the probability one would have in ab-
sence of correlation. They are related to the square of
the Fourier transform of the pionic source distribution

a On leave from Università Gregoriana, P.zza della Pilotta 4,
00187 Roma, Italy

F(2)(p1, p2) by

Cth
(2)(p1, p2) = N [1 + λF(2)(p1, p2)],

where N is a normalization factor and λ, called “incoher-
ence parameter”, is bounded by

0 ≤ λ ≤ 1. (3)

The CTBEC predicts λ = 0 if the pions are produced
coherently and λ = 1 in case of total incoherence.

The interpretation given by the CTBEC has been dis-
proved by recent analyses [4–6] which studied the “nor-
mal” correlations in p̄N annihilations at rest as a function
of the four-momentum transfer1

Q =
√

(p1 − p2)2 =
√
M2 − 4m2

π.

Firstly, the CPLEAR collaboration studied the “nor-
mal” correlations in p̄p annihilation into four charged
pions [4]. The results were that the peak heights are hnor

(2) =
Cnor

(2) (0) = N(1 + λ) > 3. This does not fit with the limit
(3) because the data show a normalization factor N close
to one.

Afterwards, one of us (M.G.) studied the “normal” cor-
relations in the annihilations at rest [5, 6]

p̄n → 2π+3π−, (4)
p̄n → π+2π−, (5)

1 Actually, the paper [5] reported the 2π+ and 2π− correla-
tions as functions of Q2. The correlations of the same reaction
as functions of Q can be found in [7]
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Table 1. Experimental peak heights. In the case of the second
reaction, we give for hcorr

(2) the interval between the lower limit
1.4, corresponding to the case f = 0.5 at 95% CL, and the
upper limit 3.1, corresponding to the case f = 0.75 at 95% CL

Reaction p̄n → π+2π− p̄p → 2π+2π− p̄n → 2π+3π−

Reference [6] [4] reevaluated
NU/NL 2 2 3/2
Q (GeV) 0.00 ÷ 0.15 0.04 ÷ 0.10 0.00 ÷ 0.10
hnor

(2) 6.89 ± 1.42 3.24 ± 0.29 4.20 ± 0.73
f = NB/NU 1/2 0.50 ÷ 0.75 2/3
hcorr

(2) 3.44 ± 0.71 1.4 ÷ 3.1 2.80 ± 0.49

These analyses found again a peak height hnor
(2) > 3. In

addition, they found that the peak height is generated by
two different mechanisms: one is the Bose-Einstein sym-
metrization of the decay amplitude, which is responsible
for a peak height hnor

(2) ∼ 2N , the second is the positive
interference between the like charged pions produced by
the decay of π+π− states having I = 0 and I = 1, which
gives a further contribution ∆hnor

(2) ∼ N .
In the mean time, the other two of us (F.C. and R.M)

developed a new interpretation of the BE correlations
based on the assumption that the strong interactions are
not isotropic, and gave a description of the BE phenomenon
in terms of a deformed spacetime [8]. One consequence of
this theory is that the maximum allowed value of the cor-
relation peak is hth

(2) = Cth
(2)(0) = 3. For this reason, we

have analysed the experimental data of the Bose-Einstein
correlations, in order to see if they are in agreement with
such a prediction.

The content of the paper is as follows. In Sect. 2, we
carry out an analysis of the existing experimental data,
and show that the limit (3) for λ is indeed overcome. In
Sect. 3, we discuss such a result from a theoretical point of
view, showing that it is consistent with the predictions of
the model of the BE phenomenon based on an anisotropic
deformation of the Minkowski metric. Section 4 concludes
the paper.

2 Comparison with the experimental data

Let us discuss the “anomalous” experimental data reported
in papers [4–6].

The prediction on the correlation peak hth
(2), based on

the theory of [8], refers to the correlations one has when all
the like charged pions are generated inside a small volume
and in a small time interval (“fireball”). This does not
occur when there are pions generated by the decay of long
living mesons. Therefore, to our aims, we cannot take into
consideration the results obtained using final states with
π0’s, because there some charged pions are generated by
the decay of the long living particles η, ω, η′, etc. Thus,
we are forced to use only the few data coming from the
studies of final states made of only charged pions. These
states are the two reactions (5) and (4) studied by one of
us [5, 6] and one of the reactions studied by the CPLEAR

collaboration [4], the annihilation at rest

p̄p → 2π+2π−. (6)

We report in the fifth row of Table 1 the correlation heights
hnor

(2) of these reactions, averaged in the interval shown in
the fourth row of the same table. The value reported for
the reaction (5) is that of the first bin in Fig. 2 of [6]. The
height reported for the reaction (4) is the value obtained
by summing the 2π+ and 2π− distributions. It has been
reevaluated by using the same data used in the previous
analysis [5, 7].

To obtain the value of reaction (6), we use the corre-
lations shown by Fig. 3 of the CPLEAR paper [4]. Here
the data of the first bins have a high error. Therefore, to
reduce the error, we use the weighted mean (WM) of the
first three bins, hWM

(2) = Ci = 3.22 ± 0.29.2

It is well known that the “normal” correlations (1) are
not a good approximation of the theoretical correlations
(2), because the unlike distribution is the sum of three
terms

DU (Q) = DR(Q) +DB(Q) +DI(Q). (7)

Here DR(Q) is the contribution due to the production of
π+π− resonances, DB(Q) is the contribution of the com-
binatorial background, i.e. of the non-interacting π+π−
pairs, and DI(Q) is the contribution of the interference
between resonances and background.

A more correct approximation of the theoretical corre-
lations can be obtained by using in the denominator the
background distribution

Ccorr
(2) (Q) =

NB

NL

DL(Q)
DB(Q)

= f(Q)Cnor
(2) (Q).

Here NB is the number of non-interacting π+π− combina-
tions, i.e. the integral of DB(Q), and f(Q) is the function
given by

f(Q) =
NB

NU

[
1 +

DR(Q) +DI(Q)
DB(Q)

]
.

Then, we evaluate the heights of the “corrected” correla-
tions by making the following three hypotheses:

(i) The contribution of the resonances and of the inter-
ference is negligible for Q ≤ 0.10 GeV.

(ii) The integral of the interference distribution DI(Q)
on the whole Q-interval vanishes.

(iii) The final state is generated by a succession of quasi-
two body decays Sn → Si + Sn−i. (Sk indicates a
state of k pions.)

The assumptions (i) and (ii) allow us to replace the
function f(Q) by the constant f = NB/NU = 1−NR/NU ,

2 For completeness’ sake, let us notice that weighted means
could not work for quantities given by ratios (like the pionic
correlation). So, we have performed also a logarithmic mean,
which gives the result 3.24 ± 0.29, in good agreement with the
WM value
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where NR = NU −NR is the total number of π+π− com-
binations which interact. In addition, the assumption (iii)
fixes f = 1/2 for the reaction (5), because there one π+π−
pair does interact and the other is background.

We obtain the value of f for reaction (4) using the pre-
vious analysis made by one of us [9] which proved that it
is dominated by the f0(1370)π− channel, with negligible
contamination by other channels. The f0(1370) is a reso-
nance which decays ρ0ρ0 and σσ [9] (σ is the symbol for
the 2π I = 0 S-wave interaction). Therefore, two π+π−
pairs interact and other four pairs are background in each
event of this reaction. Then we have f = 2/3.

Reaction (4) can proceed through two kinds of chan-
nels: Tπ and dd′, where T denotes a 3π state, and d, d′
denote 2π states. Therefore, f can range between 0.5 (Tπ
channel) and 0.75 (dd′ channel). This yields the prediction

1.72 ± 0.35 ≤ hcorr
(2) ≤ 2.58 ± 0.35. (8)

The actual value of f cannot be estimated. In fact, the
most recent analysis of reaction (6) (due to Diaz et al. [10])
dates back to the far-off 1970. This analysis interpreted
the reaction as a mixture of 20% of an I = 0 initial state,
dominated by the A2π channel, and of 80% of an I =
1 initial state, dominated by the ρ0f channels, with f
denoting an I = 0 dipion state (i.e. the σ or the f2(1270)).
Following such an analysis, one would have f ∼ 0.55 and
hcorr

(2) = 1.87 ± 0.39.
But the I = 1 initial state of reaction (6) is related by

isospin invariance to the annihilation at rest

p̄n → π+2π−π0. (9)

Reaction (9) shows a relevant production of the three
charged ρ states with relative ratios ρ+ : ρ0 : ρ− ∼ 1 :
1 : 1 [11]. This proves that this reaction is dominated by
channels of the type Tπ, which predict exactly the ratios
ρ+ : ρ0 : ρ− ∼ 1 : 1 : 1, while other possible channels,
for example ρ−ρ0 or ρ−σ, cannot produce any ρ+. Such a
conclusion is in complete disagreement with the results by
Diáz et al. [10]. Therefore, the data of reaction (9) suggest
that f in reaction (6) can be close to the value 0.75. If so,
one would have, for reaction (6):

hcorr
(2) = 2.58 ± 0.53, (10)

i.e. a value compatible with 3.
Indeed the actual peak height has to be higher, because

the experimental values (reported in Table 1) have been
obtained by a mean on an interval of Q. We estimate the
amount of such corrections by making the assumptions
that the background distribution DB(Q) is proportional
to the phase space Q/M of the π+π− system and that the
correlation function is a Gaussian [2]

Ccorr
(2) (Q) = f [N + b exp(−R2Q2)].

where N is the normalization parameter of the “normal”
correlation, and b = Nλ.

By using the fitted values of the parameters reported
in [4–7, 12], we find that the correction factor to the cor-
relation peak is about 1.05.

In addition, one has to remember that the correlation
height can be deformed by the Coulomb interaction, which
is attractive for π+π− pairs and repulsive for like pion
pairs. A common parametrization for this correction is
[13]

χ(Q) =
e2πη − 1
1 − e−2πη

, η =
αmπ

Q
,

where α ∼ 1/137 is the fine-structure constant. This cor-
rection factor is χ = 1.066 at Q = 0.10 GeV and is higher
at lower Q.

Then, we can conclude that, on account of the above
considerations, the limits of the variability range of hpeak

(2)
are actually higher than those given in (8). In particular,
the upper limit (10) is expected to be close to 3.

3 Theoretical discussion

We want now to show that the non-standard peak values
obtained by the analysis of the experimental data per-
formed in the previous section find a natural explanation
in the framework of a model of BE correlation, based on
an anisotropic, deformed Minkowski space representation
of strong interactions [4].

The main idea amounts to the point that strong inter-
actions (at least in some cases, like the BE phenomena)
may be nonpotential and/or nonlocal, and that such ef-
fects can be (in average) taken into account by consider-
ing a “deformed” spacetime inside the interaction region.
Such a possible spacetime deformation inside hadrons was
first considered, on a phenomenological basis, by Nielsen
and Picek [14]. So, we assume that inside the interaction
region where pions are produced (the “fireball” of the BE
correlation) the space-time metric is no longer the usual,
Minkowskian one, gµν = diag(−1,+1,+1,+1) but is in-
stead given by the deformed, spatially anisotropic metric
[8]

ηµν = diag(−b20,+b21,+b22,+b23) (11)

(µ, ν = 0, 1, 2, 3), where the metric parameters b2µ depend
on the energy of the process considered. Therefore, the
generalized interval reads

ds2̃ ≡ dx ∗ dx = −b20c2dt2 + b21dx
2 + b22dy

2 + b23dz
2. (12)

Let us note that the spacetime described by the inter-
val (12) actually has zero curvature, and therefore it is
not a true Riemannian space (whence the term “deforma-
tion” used to describe such a situation). Therefore, on this
respect,thepresent description ofstrong interactions in
terms of a metric change is different from that adopted
in general relativity to describe gravitation. Moreover, as
shown in [8], metric (11) reduces to the Minkowskian one,
gµν , for a suitable, characteristic value E0 of the energy.
But the energy of the process is fixed and cannot be
changed at will. Thus, although, in principle, it would
be possible to recover the Minkowski space by a suit-
able change of coordinates (e.g. by a rescaling), this would
amount to a mere mathematical operation, devoid of phys-
ical meaning. On the other hand, the phenomenological
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analysis of [8], based on a fit to the UA1 experimental
data, shows that the metric corresponding to the BE phe-
nomenon is indeed deformed. Therefore the Minkowski
space, in this framework, is a physical, and not a mathe-
matical limit3.

The spatial part of the nonlocal metric tensor η de-
scribes the spatial deformation of the boson source, where-
as the time-parameter b0 has the meaning of time-corre-
lation (i.e. phase correlation) of the bosons. Precisely, the
physical parameters aµ of the fireball are related to the bµ
of η by the relations [8]

ak = h̄cbk; a0 = h̄b0.

Moreover, in order to account for a possible anisotropic
distribution of the boson subsources inside the total source,
one has to take a four-vector source function, defined as
[8]

ρ̃µ(r) =
1
4
a4

µe
− r2̃a2

µ
2 . (13)

The deformation (12) of the Minkowski metric induces a
change in the phase factors of the boson wave function,
essentially due to the deformation ∗ of the scalar prod-
uct. Thus, the deformed symmetrized boson wave function
reads [8]

ψ̃BE
1 2 (x1, x2; r1, r2) =

1√
2

{
eip1∗(x1−r1)eip2∗(x2−r2)

+eip1∗(x1−r2)eip2∗(x2−r2)
}
. (14)

The intrinsic anisotropy of the strong interactions, ex-
pressed by (11) and (13), reflects itself in the fact that
now the correlation probability is different for different
space-time directions. This leads therefore to the following
anisotropic form of the probability DL(p1, p2):4

DL(p1, p2)(µ) =
∫ ∣∣∣ψ̃BE

1 2 (x1, x2; r1, r2)
∣∣∣2

×ρµ(r1)ρµ(r2)d4r1d
4r2. (15)

Replacing (14) in the above expression of DL, one gets,
by calculations similar to the standard ones, the following
expression for the second-order BE correlation function,
C̃(2):

C̃(2)(µ) = 1 + |F̃µ|2 (16)

3 Such a fact leads to assume that, actually, we are working
in a five-dimensional space-time, where energy just plays the
role of fifth dimension [15]. Indeed, it can be shown that this
five-dimensional space is now a true Riemannian one, with non-
zero curvature. See [15] for more details

4 Here, obviously, the momenta pi are those measured in
the laboratory frame, i.e. in full Minkowskian conditions. The
information on the deformation inside the fireball is entirely
contained in the deformation of the inner product, which in
turn reflects itself, in the expression of the correlation func-
tion, in the deformed norm of the momentum transfer (see
below). Such an effect, whereby the particles do keep memory
of the anisotropy of the forces which produced them, can be
regarded as a kind of hadronic Einstein-Podolsky-Rosen effect

namely, a different correlation function for every space-
time direction. According to (15), F̃µ is essentially the
generalized Fourier transform of the anisotropic distribu-
tion function of the sources inside the interaction region.5

Since, in the experiments, we measure a global BE cor-
relation function (1), in order to compare the theoretical
predictions of the anisotropic model with the experimental
data, we have to suitably average (16) on all space-time
directions. This can be done by assuming that the squared
norm in (16) is (the absolute value of) a relativistic norm,
built up from the spacetime metric. There are essentially
two ways of doing this, namely, we can choose either the
usual Minkowski metric gµν , or the deformed one, ηµν . By
assuming a Gaussian distribution for the sources, differ-
ent for each spacetime direction [8], we have, in the former
case:

C̃is
(2) ≡ 1 + F ∗

µg
µνFν = 1 − e−Q̃2/a2

0 +
3∑

k=1

e−Q̃2/a2
k (17)

where Q = p1 − p2 = (q0,q), Q̃2 is the deformed norm of
the momentum transfer

Q̃2 = QµηµνQ
ν = −Q2

0b
2
0 +Q2

1b
2
1 +Q2

2b
2
2 +Q2

3b
2
3. (18)

The upper-index “is” in (17) means that the average C̃is
(2)

is an isotropic one: it has been performed outside the inter-
action region, where the spacetime has its usual
Minkowskian structure. The particles involved in the BE
process do keep memory of the nonlocal, anisotropic forces
that produced them through the different form of the cor-
relation function, and the presence of the deformed metric
parameters in the exponential function (cf. (17) and (18)).

The other possibility is to average the anisotropic cor-
relation function (16) inside the interaction region, i.e.
using the deformed metric (11). We get

C̃an
(2) ≡ 1+F ∗

µη
µνFν = 1−b20e−Q̃2/a2

0 +
3∑

k=1

b2ke
−Q̃2/a2

k (19)

where “an” now means “anisotropic”. The average (19)
corresponds to differently weighting each direction, ac-
cording to the fact that the deformed metric (11) implies a
“renormalization” of the lengths, different for each direc-
tion. The correlation function (19) has been tested directly
by a fit to the UA1 experimental data, and it yields a fit
as good as that obtained by the usual Gaussian correla-
tion function [8]. Moreover, it provides information on the
shape and size of the fireball, including its “time” exten-
sion τ . This last parameter can be interpreted as a “mean-
life” of the fireball, and it can be shown that it is related

5 It must be stressed that the results obtained by our ap-
proach for the correlation function are related not only to the
anisotropy of the source distribution (cfr. (13)) but also to the
deformation of the inner product in the wavefunction phase
(see (14)). This is evident by the very form of (17), (19), where
the exponentials do contain the deformed norm (18) of the mo-
mentum transfer
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to the energy width of the correlation function (i.e. the
energy range where the experimental correlation function
is greater than one. We refer the reader to [8] for further
details)6

What we want now to stress is that the two averaged
correlation sections functions predict different limits for
the peak values. Indeed, in the case of C̃an

(2), (19), it is easy
to see that, in the Minkowskian limit (since every b2µ is of
the order of 1/3 [8])7, the upper value of C̃an

(2) (Q = 0) is

C̃an
(2) = 1 +

1
3

+
1
3

+
1
3

− 1
3

= 1.67. (20)

In the case of the isotropic average, we get instead

C̃is
(2) = 1 + 1 + 1 + 1 − 1 = 3. (21)

Notice that this theoretical upper limit for the correlation
peak height is here derived for the first time, because only
the anisotropic case was considered in [8].

We can therefore conclude that, in this model, the peak
value hpeak

(2) of the correlation function is expected to vary
within the values

1.67 ≤ hth
(2) ≤ 3. (22)

4 Conclusions

The conclusions we can draw by the above discussion are
the following:

– (a) We still confirm that the “canonical” theory of the
Bose-Einstein correlations [3] is in disagreement with
the experimental data.

– (b) The model of Cardone and Mignani [8] predicts
1.67 ≤ hpeak

(2) ≤ 3. We have found that the experimen-
tal data are in agreement with this prediction. This
is a proof in favour of the model of the asymmetry in
strong interactions. Moreover, the standard treatment
of the BE correlation, valid in the (electromagnetic)
optical case, does no longer hold for strong interac-
tions. Indeed, the behaviour of BE-like phenomena in
hadronic processes is a consequence of the anisotropy

6 Furthermore, in [8] the explicit dependence of the metric
parameters b2

µ on the energy was derived by using the data
of the UA1 ramping run. In this sense, the functions b2

µ(E)
provide an effective dynamical description of the strong inter-
action in terms of a deformation of the spacetime metric (at
least for the two-pion BE phenomenon). See [8]

7 This is due to the fact that, before the deformation, the
spatial shape of the fireball can be considered spherical, with
unit radius, so that the mean squared values of the spatial
parameters b2

k (which are related to the spatial sizes of the
interaction region) are of the order 1/3. Moreover, since both
the spatial deformation of the source and the appearance of
the time parameter b2

0 are to be ascribed to the same (non-
local) effects, it is expected that b2

0, too, is of the same order
of magnitude of the spatial parameters

of the strong interactions. Paradoxically, the effect is
enhanced at low energy: the value 2, obtained by the
“optical” treatment of BE correlation in pion produc-
tion, is only a lower limit on the peak value.

– (c) The interpretation given by Gaspero [5–7] is that
the correlation peak height is generated by two mech-
anisms: the Bose-Einstein statistics and the positive
interference between the like pions generated by the
decay of π+π− states having isospin I = 0 and I = 1.
As is well known, the isospin is a quantum number
related to a rotation in an abstract space. This work
suggests that isospin could perhaps be related to the
anisotropy of the strong interactions.

References

1. Goldhaber G., et al., Phys. Rev. Lett. 3 (1959) 181
2. Goldhaber G., Goldhaber S., Lee W., pais A., Phys. Rev.

120 (1960) 300
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